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Abstract — In this paper, the propagation of magnetostatic waves

(MSWS) in a normally magnetized low-loss ferrite slab (such as a yttrium

iron garnet (YIG) slab) placed inside a waveguide is investigated theoreti-

cally. This case has never been studied before, and is analyzed here for tbe

first time.

A dispersion relation for the modes of propagation in terms of an

infinite determinant can be obtained. With proper truncation procedures,

sample numerical calculations for dispersion relations and group time delay

per unit length were obtained and are presented herein. The general

formulation in this paper contains all the information provided by the

degenerate cases previously published. One special case of interest, i.e.,

that of a multilayer planar structure, is derived from our general formula-

tion. The derivations of other special cases follow the same procedure.

I. INTRODUCTION

M AGNETOSTATIC WAVE propagation in a ferrite

slab completely filling a waveguide or otherwise

bounded by metallic walls has been reported in the litera-

ture [1]–[3]. Recently the analysis of magnetostatic wave

propagation in a partially YIG-loaded waveguide was re-

ported [4], [5]. In these recent developments, the direction

of the dc magnetic field was assumed to be parallel to the

slab and perpendicular to the direction of wave propa-

gation which led to the propagation of magnetostatic

surface waves (MSSW’S). These waves are highly nonre-

ciprocal with regard to the direction of propagation and

unsymmetrical with respect to the slab position in the

waveguide.

The case of a normally magnetized YIG slab partially

filling a waveguide has never been approached and re-

mains yet unsolved.

In this paper, the dc magnetic field is perpendicular to

the slab plane (see Fig. 1). This leads to the propagation of

magnetostatic forward volume waves (MSFVW’S), which

are reciprocal and symmetrical.

An analytical expression for the dispersion relation is

derived in Section II. Some numerical computations for

the dispersion relations and group time delay for certain

values of the dc magnetic field were obtained and the
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Fig. 1. Partiafly loaded waveguide with Hdc normal to the YIG slab.

results of this simulation are presented in Section III. Also

in this section, one special case, i.e., that of a multilayer

planar structure, is derived from the formulation devel-

oped in this paper. Final conclusions and some discussions

are given in Section IV.

II. ANALYSIS

The relative permeability tensor when ~~C = H02, can

be expressed as

‘=[-% ‘? !1
where

~=1 ~ “’o’”~
u; — J

auM
K1=————

u: — (J2

6.)0= p~yH~

@M= poyllo.

Here PO and y are the free-space permeability constant

and gyromagnetic constant (2.8 MHz/Oe), respectively, o

is the operating frequency, and Ho and MO, in oersteds,

are the internal magnetic field and saturation magnetiza-

tion [6], respectively (1 Oe = 1000/47r A/m).
For simplicity of analysis, we assume that the demag-

netizing fields are negligible. In this case the external

magnetic field ( H~C) becomes equals to the internal mag-

netic field, i.e., H~C = Hfl.
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For rnagnetostatic waves, the small-signal magnetic field

intensity (~) and the small-signal magnet ic flux density (~)

are given by

i=vl$ (1)

V.z=o (2)

$=poi (in air) (3)

5= ~O~rZ (in ferrite) (4)

where @ is the scalar magnetic potential satisfying (from

(l), (2),(3),(4))

+Xx + $,,, + +=== o (5)

in the air regions (1 and III) and

P(%+%,)++,z=o (6)

in the ferrite region.

The implied time dependence is eJ’” and is omitted in

all of the following expressions. The variation of 1$ in the

axial direction (y) is assumed to be of the form e–JKy,

where K is the wavenumber. Therefore (5) and (6) can be

rewritten as

% -I- o,, = K2@ (in air) (7)

p@XX+ @z== pK2@ (in ferrite). (8)

The boundary conditions to be satisfied are

1) bY=Oatx=Oanda;

2) bj=Oatz=Oandb;

3) @ being continuous at the interfaces z = ZI and Z2;

4) b= being continuous at the interfaces z = ZI and Z2.

Here bX and b= are the components of ~ in the x and the z

directions, respectively.

In this special case when the ferrite slab extends to both

waveguide walls, it can be treated as a boundary value

problem and mode analysis is employed effectively to

solve for the dispersion characteristics for the different

modes of propagation.

The following forms of @ in the three regions satisfy the

boundary conditions 1 and 2 and can be expressed as

f A}lcosnmx/acoshy~(b -- z)e-JK’ (9)
,r=~

ccx( aK1 K
cos n wx/a – — sin ,n7rx/a

11=0 pn7r i

[ B,, CosYnZ+ Cn sin ynZ ]e-JK.’ (10)

~ D,,cosnrx/acoshy~ze-JKy. (11)
11=0

where A,,, B,,, C,l, and D,, are constants and y: and y. are

phase constants given by

y~=[K2+(nm/a)2] *’2

The potential functions and normal magnetic fields in

the air (eqs. (9) and (11)) and in YIG (eq. (10)) are

matched at the interfaces z = ZI and Z2 on the basis of

condii ions 3 and 4. This yields a set of coupled equations

where the elimination of the unknown constants A ~, %,

C., and D. is necessary in order to find the dispersion

relatiom. However, by using a certain procedure, An and

D. can be eliminated and the following systems of linear

equations in B. and C. can be obtained:

Bn,R ~,n, 4- cm,sn,n, + P ~ (BnRm,l + cnsm,, ) = o
11=0

nkm= odd (12)

and

Bw,RjB, + C.ZS:,W,+’P ~ (B.~k,,, + CnSLH) = O
~=Q

n?m= odd (13)

where Rm,,, SW,., R~n, and S~~ are known constants given

by

R = &n(y~tanhy~s2cos y.z2 - Ynsiny.z2) (14a)

S~~ = /3fl,H(yjtanhyjs2 siny.zz + y.cos y.z2) (14b)

Rfmn = IL.(YL tanhyjz,cps Y.Z, + Y. siny.z,) (14c)

S~n = &H(yjtanhyjzl siny.zl – Y.COS Y.zI) (14d)

with

(
~~?!= ~>(n’ -m’) 1~1

}

,s2=b–zz

and

p = –4aKlK/prr2.

Note that all modes except the zeroth-order are coupled

and one cannot exist without the others. This phenomenon

leads to mode coupling between the propagating waves.

Equations (12) and (13) provide an infinite number of

linear equations in B,, and C. which can be expressed in

the foil owing matrix form:

Ml ~ Pi1412

PM21 A422

P“kl,l PM12

where

HR S,l
M,l = R:’

,, s;,

M,,=o

. PMll .

. PM2, .
. .
. .

ii, :
. .~ 1

N1

N2

1

= o (15)

N,

fori-+j= oddandfori=j

for i + j = even

and

Y,, = ~Y:

a’=—p, /4<0.

and

(IIB
N,= ~’ .
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Fig. 2. YIGslab between twoground planes (normal field).

A nontrivial and unique solution of (15) for N,’s exists if

the infinite determinant of the coefficient matrix is set to

zero. For the purpose of numerical computations, which

follow in the next section, the infinite determinant is

truncated to a finite order.

A Degenerate Case

It is interesting to note that several degenerate cases of

the formulation derived above reduce to problems that

have been investigated previously [7].

As noted earlier, the zeroth-order mode is uncoupled

and corresponds to the case when a ~ co, i.e., when the
YIG slab is placed between two ground planes. This

structure, shown in Fig. 2, has been investigated exten-

sively [8], [9].

To derive the dispersion relation from our formulations,

the determinant of the zeroth-order mode, obtained from

(12) and (13) (with m = n = O), is set to zero as follows:

R SOO
= O ~ ROOS~O– R&&O = O

R: S{0
(16)

Note that in this special case y~ = K and yO= aK.

Upon substitution and simplification, (16) becomes

a(tanh Ksz + tanh Kzl)
tan aKt =

a2 – tanh KS2 tanh Kzl
(17)

where t is the thickness of the YIG slab and is equal to

Z* — z~.

Equation (17) was reported exactly by Daniel et al. [10].

III. COMPUTER SIMULATION AND l& SULTS

To obtain a nontrivial solution for higher order modes

(other than zero) from the system of linear equations given

by (15), the determinant of the coefficient matrix which is

infinite in size must be zero. However, for practical pur-

poses, the matrix was properly truncated for best accuracy.
The truncation cutoff point of the matrix depends on the

mode of propagation. For example, for the first- and

second-order modes, the minimum matrix sizes were found

to be 4 x 4 and 6 x 6, respectively. For higher order modes,

larger matrices must be considered.

A computer program was written to find the determi-

nant of the truncated coefficient matrix. With the aid of a

proper computer algorithm, the determinant roots of the

dispersion relation were found through several iterations.

Through the results of these analyses it was found that the

wave propagation is symmetrical in the guide cross section

with respect to the slab position. Furthermore, in contrast
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Fig, 3. Effect of slab position on the dispemlon characteristics. Several
modes of propagation are shown for each position of the slab.
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Fig. 4. Group time delay versus frequency.

gation is reciprocal for K and – K. Fig. 3 shows the effect

of lowering the slab position. Besides the zeroth-order

mode, two higher order modes are also shown. These

higher order modes exist due to the finite width of the

slab. In Fig. 4, the corresponding group time delays for

different modes are plotted. The time delay increases as

the slab is moved toward the center of the guide. Fig. 5
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Fig. 5. Dispersion characteristics for various magnetic fields ( n = 1).
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Fig. 6. Group time delay characteristics ( n = 1).

shows the effect of normal magnetic fieldl for several bias

field values for the first-oi-der ~ode. The dispersion curves

are simply shifted to higher ranges of frequencies as the

bias field value is increased. This effect on the group

time-delay characteristics is shown in Fig. 6.

IV. CONCLUSIONS

The propagation of magnetostatic waves in a fert-ite

(such as YIG) slab inside a rectangular waveguide was

analyzed. The employment of the mode analysis technique

yielded the dispersion relations in terms of an infinite

determinant. Using a proper truncation procedure, several

important effects were studied. The dependence of the

dispersion relation and group time delay per unit length on

the position of the YIG slab and value of the bias field was

presented.

From all these results, it becomes evident that in order

to achieve high time delays, the slab should be positioned

in the center of the guide, while for high~er device band-

widths, the YIG slab should be positioned at the top or

bottom of the guide. Thus there exists a tradeoff between

the time delay per unit length and the device bandwidth,

and some design compromises should be made. Finally,

the tunable properties of the waveguide structure (Fig. 1)

by means of a normal magnetic bias field were investigated

and the results indicate that the waveguide structure can

be tuned to any desired frequency range simply by shifting

the
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bias magnetic field to a proper value.
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