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Abstract —In this paper, the propagation of magnetostatic waves
(MSW’s) in a normally magnetized low-loss ferrite slab (such as a yttrium
iron garnet (YIG) slab) placed inside a waveguide is investigated theoreti-
cally. This case has never been studied before, and is analyzed here for the
first time.

A dispersion relation for the modes of propagation in terms of an
infinite determinant can be obtained. With proper truncation procedures,
sample numerical calculations for dispersion relations and group time delay
per unit length were obtained and are presented herein. The general
formulation in this paper contains all the information provided by the
degenerate cases previously published. One special case of interest, i.e.,
that of a multilayer planar structure, is derived from our general formula-
tion. The derivations of other special cases follow the same procedure.

I. INTRODUCTION

AGNETOSTATIC WAVE propagation in a ferrite

slab completely filling a waveguide or otherwise
bounded by metallic walls has been reported in the litera-
ture [1]-[3]. Recently the analysis of magnetostatic wave
propagation in a partially YIG-loaded waveguide was re-
ported [4], [5]. In these recent developments, the direction
of the dc magnetic field was assumed to be parallel to the
slab and perpendicular to the direction of wave propa-
gation which led to the propagation of magnetostatic
surface waves (MSSW’s). These waves are highly nonre-
ciprocal with regard to the direction of propagation and
unsymmetrical with respect to the slab position in the
waveguide.

The case of a normally magnetized YIG slab partially
filling a waveguide has never been approached and re-
mains yet unsolved.

In this paper, the dc magnetic field is perpendicular to
the slab plane (see Fig. 1). This leads to the propagation of
magnetostatic forward volume waves (MSFVW’s), which
are reciprocal and symmetrical.

An analytical expression for the dispersion relation is
derived in Section II. Some numerical computations for
the dispersion relations and group time delay for certain
values of the dc magnetic field were obtained and the
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Fig. 1. Partially loaded waveguide with H;. normal to the YIG slab.

results of this simulation are presented in Section III. Also
in this section, one special case, i.e., that of a multilayer
planar structure, is derived from the formulation devel-
oped in this paper. Final conclusions and some discussions
are given in Section IV.

II. ANALYSIS

The relative permeability tensor when H, = Hy%, can
be expressed as

_ B JK; 0
Fl‘rs _]Kl P 0
0 0 1
where
000 s
=1+
U S
Wy,
K=_~__
Uowl -l
wg = povHy
Wy = oYM,

Here p, and y are the free-space permeability constant
and gyromagnetic constant (2.8 MHz/Oe), respectively, w
is the operating frequency, and H, and M,, in oersteds,
are the internal magnetic field and saturation magnetiza-
tion [6], respectively (1 Oe =1000/47 A /m).

For simplicity of analysis, we assume that the demag-
netizing fields are negligible. In this case the external
magnetic field (H, ) becomes equals to the internal mag-
netic field, i.e., Hy, = H,,.

0
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For magnetostatic waves, the small-signal magnetic field
intensity (%) and the small- signal magnetic flux density (b)
are given by

h=v¢ (1)
vb=0 2)
b=poh (in air) (3)
b=pohh  (in ferrite) (4)

where ¢ is the scalar magnetic potential satisfying (from

(1),(2).3),(4) :
¢xx + (i)yy + (b:.': =0 (5)

in the air regions (I and III) and
B0+ dy,)+..=0 (6)

in the femte region.

The implied time dependence is ¢/“’ and is omitted in
all of the following expressions. The variation of ¢ in the
axial direction (y) is assumed to be of the form e /X7,
where K is the wavenumber. Therefore (5) and (6) can be
rewritten as

¢Xx + zz = K2¢
et 6, = pK7
The boundary conditions to be satisfied are

1) b,=0at x=0and g
2) b,=0at z=0and b;
3) ¢ being continuous at the interfaces z = z; and z,;
4) b, being continuous at the interfaces z = z; and z,.

(in air) (7)
(in ferrite). (8)

Here b, and b, are the components of b in the x and the z
directions, respectively.

In this special case when the ferrite slab extends to both
waveguide walls, it can be treated as a boundary value
problem and mode analysis is employed effectively to
solve for the dispersion characteristics for the different
modes of propagation.

The following forms of ¢ in the three regions satisfy the
boundary conditions 1 and 2 and can be expressed as

Z A;;COSnWX/aCOShy;(b—-Z)e“l’(y (9)

¢ =
n=0
et ak K
¢,= ). |cosnmx/a~— sinnwx/a
n=10 K
[B,cosvy,z+ C,siny,z]e/X” (10)
oo
¢;= Y D,cosnmx/acoshy,ze /¥’ (11)

n=0
where A,, B,, C,, and D, are constants and vy, and v, are
phase constants given by
1/2
vi= (K2 +(nn/a)’]”
Y = @Y,
and

2

a‘=—pu, p<0.
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The potential functions and normal magnetic fields in
the air (eqs. (9) and (11)) and in YIG (eq. (10)) are
matched at the interfaces z =z, and z, on the basis of
conditions 3 and 4. This yields a set of coupled equations
where the elimination of the unknown constants 4,, B,
C,, and D, is necessary in order to find the dispersion
relation. However, by using a certain procedure, A4, and
D, can be eliminated and the following systems of linear
equations in B, and C, can be obtained:

+PY (BR,,+CS,,)=0

B R+ CouSrm
n=0
n+m=odd (12)
and
B,R,.,.+CSpt P Z (B,R,,,+C,S,,)=0
n=0
n+m=odd (13)
where R, S,,., R, and S, are known constants given
by
Ryun = By (Y tanhy,, s, cos v,2, = v, 8inv,2,) (14a)
Sun = Bun(¥sstanhy,, s, siny,z, + v,c08v,2,) (14b)
Ry = By (v, tanhy,, 2z, cO8 v, 2, + v, siny,z;)  (14c)
Spin = Bun(Yoptanhy,, z, siny, z; — y,cosv,z,)  (14d)
with |
g - { 1, m= n}
A1 /(n*-m?), m#*n
s, =b—1z,
and

p=—4aK,K/un?.

Note that all modes except the zeroth-order are coupled
and one cannot exist without the others. This phenomenon
leads to mode coupling between the propagating waves.

Equations (12) and (13) provide an infinite number of
linear equations in B, and C, which can be expressed in
the following matrix form:

PM,, - || M

Mll PM]2
PM,, M, PM,, - I N,
: : : : =0 (15)
PM, PM, - M, -||N
where
M, = R, S”) fori4+ j=odd and fori= j
TR, S T :
M, = for i + j=even
and
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A nontrivial and unique solution of (15) for N,’s exists if
the infinite determinant of the coefficient matrix is set to
zero. For the purpose of numerical computations, which
follow in the next section, the infinite determinant is
truncated to a finite order.

A Degenerate Case

It is interesting to note that several degenerate cases of
the formulation derived above reduce to problems that
have been investigated previously [7].

As noted earlier, the zeroth-order mode is uncoupled
and corresponds to the case when a — o, 1.e., when the
YIG slab is placed between two ground planes. This
structure, shown in Fig. 2, has been investigated exten-
sively [8], [9].

To derive the dispersion relation from our formulations,
the determinant of the zeroth-order mode, obtained from
(12) and (13) (with m = n = 0), is set to zero as follows:

R 00 SOO

g |7 0= RS0 — RooSo0 =0
00 200

(16)

Note that in this special case v, = K and y, = aK.
Upon substitution and simplification, (16) becomes

a(tanh Ks, + tanh Kz, )
a? —tanh Ks, tanh Kz,

tan aKt = (17)
where ¢ is the thickness of the YIG slab and is equal to
Zy = 2.

Equation (17) was reported exactly by Daniel ez al. [10].

I

To obtain a nontrivial solution for higher order modes
(other than zero) from the system of linear equations given
by (15), the determinant of the coefficient matrix which is
mnfinite in size must be zero. However, for practical pur-
poses. the matrix was properly truncated for best accuracy.
The truncation cutoff point of the matrix depends on the
mode of propagation. For example, for the first- and
second-order modes, the minimum matrix sizes were found
to be 4 X4 and 6 X6, respectively. For higher order modes,
larger matrices must be considered.

A computer program was written to find the determi-
nant of the truncated coefficient matrix. With the aid of a
proper computer algorithm, the determinant roots of the
dispersion relation were found through several iterations.
Through the results of these analyses it was found that the
wave propagation is symmetrical in the guide cross section
with respect to the slab position. Furthermore, in contrast

COMPUTER SIMULATION AND RESULTS
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Fig. 3. Effect of slab position on the dispemsion characteristics. Several
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Fig. 4. Group time delay versus frequency.

gation is reciprocal for K and — K. Fig. 3 shows the effect
of lowering the slab position. Besides the zeroth-order
mode, two higher order modes are also shown. These
higher order modes exist due to the finite width of the
slab. In Fig. 4, the corresponding group time delays for
different modes are plotted. The time delay increases as
the slab is moved toward the center of the guide. Fig. 5
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Fig. 6. Group time delay characteristics (n =1).

shows the effect of normal magnetic field for several bias
field values for the first-ofder mode. The dispersion curves
are simply shifted to higher ranges of frequencies as the
bias field value is increéased. This effect on the group
time-delay characteristics is shown in Fig. 6.

IV. CoNCLUSIONS

The propagation of magnetostatic waves in a ferrite
(such as YIG) slab inside a rectangular waveguide was
analyzed. The employment of the mode analysis techmque
yielded the dispersion relations in terms of an infinite
determinant. Using a proper truncation procedure, several
important effects were studied. The dependence of the
dispersion relation and group time delay per unit length on
the position of the YIG slab and value of the bias field was
presented.

From 4ll these results, it becomes evident that in order
to achieve high time delays, the slab should be positioned
in the center of the guide, while for higher device band-
widths, the YIG slab should be positioned at the top or
bottom of the guide. Thus there exists a tradeoff between
the time delay per unit length and thé device bandwidth,
and some design compromises should be made. Finally,
the tunable propérties of the waveguide structure (Fig. 1)
by means of a normal magnetic bias field were investigated
and the results indicate that the waveguide structure can
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be tuned to ahy desired frequency range simply by shifﬁng
the bias magnetic field to a proper value.
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